Расчет заземляющего устройства

Расчет защитного заземления

Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму. Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители вбиваются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления.

К чему сводится расчет заземления?

Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.

Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.

Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.

Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления.

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

где – ρэкв – эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

где – Ψ – сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t – заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Заглубление горизонтального заземлителя можно найти по формуле:

Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.

Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:

Rн – нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).

Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.

Сопротивление растекания тока для горизонтального заземлителя:

Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

– в ряд; – по контуру.

а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Полное количество вертикальных заземлителей определяется по формуле:

ηв – коэффициент спроса вертикальных заземлителей (таблица 4).

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего.

Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.

Территория электротехнической информации WEBSOR

Расчет заземляющих устройств

Нормы > Все про заземление

РАСЧЕТ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ

Расчет заземляющих устройств сводится главным образом к расчету собственно заземлителя, так как заземляющие проводники в большинстве случаев принимаются по условиям механической прочности и устойчивости к коррозии. Исключение составляют лишь установки с выносным заземляющим устройством. В этих случаях рассчитывают последовательно сопротивление соединительной линии и сопротивление заземлителя, чтобы суммарное сопротивление не превышало расчетного.
Расчет сопротивления заземлителя проводится в следующем порядке:
1. Устанавливается необходимое по ПУЭ допустимое сопротивление заземляющего устройства . Если заземляющее устройство является общим для нескольких электроустановок, то расчетным сопротивлением заземляющего устройства является наименьшее из требуемых.
2. Определяется необходимое сопротивление искусственного заземлителя с учетом использования естественного заземлителя, включенного параллельно, из выражений

где — расчетное сопротивление заземляющего устройства по п. 1; — сопротивление искусственного заземлителя; — сопротивление естественного заземлителя.
3. Определяется расчетное удельное сопротивление грунта с учетом повышающих коэффициентов, учитывающих высыхание грунта летом и промерзание его зимой.
При отсутствии точных данных о грунте можно воспользоваться табл. 12-1, где приведены средние данные по сопротивлениям грунтов, рекомендуемые для предварительных расчетов.

Таблица 12-1 Удельное сопротивление грунтов

Удельное сопротивление r , Ом Ч м

Удельное сопротивление r , Ом Ч м

Глина (слой 7—10 м, далее скала, гравий)
Глина каменистая (слой 1—3 м, далее гравий)
Земля садовая
Известняк
Лесс
Мергель
Песок
Песок крупнозернистый с валунами
Скала

Суглинок
Супесок
Торф
Чернозем
Вода:
грунтовая
морская
прудовая
речная

Примечание: Удельные сопротивления грунтов определены при влажности 10-20% к массе и на глубине 1,5 м.

Повышающие коэффициенты k для различных климатических зон приведены в табл. 12-2 для горизонтальных и вертикальных электродов.
4. Определяется сопротивление растеканию одного вертикального электрода по формулам из табл. 12-3. Эти формулы даны для стержневых электродов из круглой стали или труб. При применении углов для вертикальных электродов в качестве диаметра подставляется эквивалентный диаметр уголка

где b — ширина сторон уголка.

Таблица 12-2 Значения коэффициента k для различных климатических зон

Данные, характерезующие климатические зоны и тип применяемых электродов

1. Климатические признаки зон:
Средняя многолетняя температура
(январь), °С
Средняя многолетняя высшая температура (июль), °С
Среднее количество осадков, см
Продолжительность замерзания вод, дни
2. Коэффициент k
а) при применении стержневых электродов длиной 2—3 м и глубине заложения их вершин 0,5—0,8 м
б) при применении протяженных электродов и глубине заложения их вершин 0,8 м

Таблица 12-3 Расчет сопротивлений растеканию одного электрода

Вертикальный у поверхности земли

Вертикальный ниже уровня земли

Горизонтальный протяженный ниже уровня земли

b — ширина полосы; если землитель круглый диаметром d , то b=2d

Пластинчатый вертикальный ниже уровня земли

a и b — размеры сторон пластины

Кольцевой горизонтальный ниже уровня земли

b —ширина полосы; если заземлитель круглый диаметром d , то b = 2d

5. Определяется примерное число вертикальных заземлителей n при предварительно принятом коэффициенте использования :

где — необходимое сопротивление искусственного заземлителя.
Коэффициенты использования вертикальных заземлителей даны в табл. 12-4 в случае расположения их в ряд и в табл. 12-5 в случае размещения их по контуру без учета влияния горизонтальных электродов связи.
6. Определяется сопротивление растеканию горизонтальных электродов по формулам из табл. 12-3. Коэффициенты использования горизонтальных электродов для предварительно принятого числа вертикальных электродов принимаются по табл. 12-6 при расположении их в ряд и по табл. 12-7 при расположении их по контуру.

Таблица 12-4 Коэффициенты использования вертикальных электродов

Отношение расстояния между вертикальными
электродами к их длине

Число вертикальных электродов в ряду

Таблица 12-5 Коэффициенты использования вертикальных электродов

Отношение расстояния между вертикальными
электродами к их длине

Число вертикальных электродов в ряду

Таблица 12-6 Коэффициенты использования горизонтальных электродов

Отношение рассюииия между вертикальными электродами к их длине

Коэффициент использования при числе вертикальных электродов в ряду n

Таблица 12-7 Коэффициенты использования горизонтальных электродов

Отношение рассюииия между вертикальными электродами к их длине

Коэффициент использования при числе вертикальных электродов в контуре n

7. Уточняется необходимое сопротивление вертикальных электродов с учетом проводимости горизонтальных соединительных электродов из выражений

где — сопротивление растеканию горизонтальных электродов, определенное в п. 6.
8. Уточняется число вертикальных электродов с учетом коэффициентов использования по табл. 12-4 или 12-5:

Окончательно принимается число вертикальных электродов из условий размещения.
9. Для установок выше 1000 В с большими токами замыкания на землю проверяется термическая стойкость соединительных проводников по формуле (12-5).

Пример 12-1. Требуется рассчитать заземление подстанции 110/10 кВ со следующими данными: наибольший ток через заземление при замыканиях на землю на стороне 100 кВ 3,2 кА; наибольший ток через заземление при замыканиях на землю на стороне 10 кВ 42 А; грунт в месте сооружения подстанции — суглинок; климатическая зона 2; дополнительно в качестве заземления используется система тросы — опоры с сопротивлением заземления 1,2 Ом.

Решение
1. Для стороны 110 кВ требуется сопротивление заземления 0,5 Ом. Для стороны 10 кВ по формуле (12-6)

где расчетное напряжение на заземляющем устройстве принято равным 125 В, так как заземляющее устройство используется также для установок подстанции до 1000 В. Таким образом, в качестве расчетного принимается сопротивление .
2. Сопротивление искусственного заземлителя рассчитывается с учетом использования системы тросы — опоры;

3. Рекомендуемое для предварительных расчетов удельное сопротивление грунта в месте сооружения заземлителя — суглинке по приведенным выше данным составляет 100 Ом Ч м. Повышающие коэффициенты для климатической зоны 2 по табл. 12 2 принимаются равными 4,5 для горизонтальных протяженных электродов при глубине заложения 0,8 м и 1,8 для вертикальных стержневых электродов длиной 2—3 м при глубине заложения их вершины 0,5—0,8 м.
Расчетные удельные сопротивления:
для горизонтальных электродов

для вертикальных электродов

4. Определяется сопротивление растеканию одного вертикального электрода — уголка № 50 длиной 2,5 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 12-3:

где

5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования :

6. Определяется сопротивление растеканию горизонтальных электродов — полос 40 X 4 мм2, приваренных к верхним концам уголков. Коэффициент использования соединительной полосы в контуре при числе уголков порядка 100 и отношении по табл. 12-7 равен: .
Сопротивление растеканию полосы по формуле из табл. 12-3

7. Уточненное сопротивление вертикальных электродов

8. Уточненное число вертикальных электродов определяется при коэффициенте использования , принятом из табл. 12-5 при n =100 и :

Окончательно принимается 117 уголков.
Дополнительно к контуру на территории подстанции устраивается сетка из продольных полос, расположенных на расстоянии 0,8—1 м от оборудования, с поперечными связями через каждые 6 м. Дополнительно для выравнивания потенциалов у входов и въездов, а также по краям контура прокладываются углубленные полосы. Эти неучтенные горизонтальные электроды уменьшают общее сопротивление заземления; проводимость их идет в запас.
9. Проверяется термическая стойкость полосы 40 X 4 мм2. Минимальное сечение полосы из условий термической стойкости при к. з. на землю по формуле (12-5) при приведенном времени прохождения тока к. з.

Читайте также:  Стержень заземления

Таким образом, полоса 40 X 4 мм2 условию термической стойкости удовлетворяет.

По результатам примера 12-1 можно видеть, что при достаточно большом количестве вертикальных электродов горизонтальные электроды, соединяющие верхние концы вертикальных, весьма слабо влияют на результирующее расчетное сопротивление контура заземления. При этом также обнаруживается дефект существующей методики расчета для случаев, когда требуется достаточно малое сопротивление контура. В выполненном примерном расчете этот дефект выявился в том, что учет дополнительной проводимости контура от горизонтальной соединительной полосы привел не к уменьшению потребного количества вертикальных электродов, а наоборот, к его увеличению примерно на 5%. На основании этого можно рекомендовать в подобных случаях рассчитывать необходимое количество вертикальных электродов без учета дополнительной проводимости соединительных и других горизонтальных полос, полагая, что их проводимость будет идти в запас надежности.

Пример 12-2. Требуется рассчитать заземление подстанции с двумя трансформаторами 6/0,4 кВ мощностью 400 кВ Ч А со следующими данными: наибольший ток через заземление при замыкании на землю со стороны 6 кВ 18 А; грунт в месте сооружения — глина; климатическая зона 3; дополнительно в качестве заземления используется водопровод с сопротивлением растеканию 9 Ом.
Решение
Предполагается сооружение заземлителя с внешней стороны здания, к которому примыкает подстанция, с расположением вертикальных электродов в один ряд на длине 20 м; материал — круглая сталь диаметром 20 мм, метод погружения — ввертыванием; верхние концы вертикальных стержней, погруженные на глубину 0,7 м, приварены к горизонтальному электроду из той же стали.
1. Для стороны 6 кВ требуется сопротивление заземления, определяемое формулой (12-6):

где расчетное напряжение на заземляющем устройстве принято равным 125 В, так как заземляющее устройство выполняется общим для сторон 6 и 0,4 кВ. Далее согласно ПУЭ сопротивление заземлителя не должно превышать 4 Ом.
Расчетным, таким образом, является сопротивление заземления .
2. Сопротивление искусственного заземлителя рассчитывается с учетом использовании водопровода в качестве параллельной ветви заземления:

3. Рекомендуемое для расчетов сопротивление грунта в месте сооружения заземлителя — глины по табл. 12-1 составляет 70 Ом Ч м. Повышающие коэффициенты для климатической зоны 3 но табл. 12-2 принимаются равными 2,2 для горизонтальных электродов при глубине заложения 0,8 м и 1,5 для вертикальных электродов длиной 2—-3 м при глубине заложения их вершины 0,5—0,8 м.
Расчетные удельные сопротивления грунта:
для горизонтальных электродов

для вертикальных электродов

4. Определяется сопротивление растеканию одного стержня диаметром 20 мм и длиной 2 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 12-3:

5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования :

6. Определяется сопротивление растеканию горизонтального электрода из круглой стали диаметром 20 мм, приваренного к верхним концам вертикальных стержней. Коэффициент использовании горизонтального электрода в ряду из стержней при числе их примерно равном 5 и отношении расстояния между стержнями к длине стержня в соответствии с табл. 12-6 принимается равным 0,86.
Сопротивление растеканию горизонтального электрода по формуле из табл. 12-3

7. Уточненное сопротивление растеканию вертикальных электродов

8. Уточненное число вертикальных электродов определяется при коэффициенте использования , принятом из табл. 12-4 при n =4 и :

Окончательно принимаются 4 вертикальных стержня; при этом сопротивление растеканию несколько меньше расчетного.

Расчет заземления

Без грамотно рассчитанного контура заземления (ЗК) надеяться на эффективность работы защитной конструкции было бы большой ошибкой. Только убедившись в том, что для токов стекания подготовлена цепочка с минимальным сопротивлением можно быть уверенным в безопасности людей, работающих на линии. Поэтому так важно сразу же разобраться со всеми тонкостями и особенностями расчета контуров заземления.

Цель расчета защитного заземления

Обустраиваемое на стороне потребителя заземляющее устройство предназначено для защиты не только персонала, обслуживающего электроустановки, но и рядовых пользователей.

Важно! Опасный потенциал может попасть на металлические части оборудования во время работы с ним совершенно случайно (из-за повреждения изоляции проводов, например).

Полноценный расчет заземления гарантирует образование надежного контакта защитного устройства с землей, приводящего к растеканию тока и снижению уровня опасного напряжения.

Таким образом, назначение расчета заземляющих устройств – создание условий, исключающих риск поражения живых организмов высоким потенциалом путем его снижения в точке замыкания. В отсутствие хорошо просчитанного и функционального заземлителя любое прикосновение к корпусу поврежденного оборудования равнозначно прямому контакту с фазной жилой.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.

Линейная схема контура заземления для частного дома

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.

Схема монтажа одиночного заземляющего электрода

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).

Комплект модульно-штыревого заземления

Обратите внимание: Для надежной защиты от коррозии все резьбовые элементы стержней покрываются графитной пастой, входящей в комплект фирменной поставки.

Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

Дополнительное замечание: Перед проведением расчета также потребуется знать величину сопротивления грунта Ом на участке проведения монтажных работ.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска).

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

Полезное замечание: Минимальную длину штырей вычисляют с учетом технических требований (необходимостью получения требуемого сопротивления стеканию в землю).

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

Схема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Таблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:

где – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Читайте также:  Как подсоединить розетку

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Пример расчета заземления

В качестве «классического» примера расчета заземления рассмотрим вариант ЗУ с учетом заданных исходных данных, то есть проведем вычисления для одиночного металлического штыря. Сразу оговоримся, что такие простейшие конструкции применяются при организации повторного заземления высоковольтных опор. В рассматриваемой ситуации согласно положениям ПУЭ (смотрите п.1.7.103.) сопротивление растеканию тока не может быть более 15, 30 и 60 Ом для напряжений 660, 380 и 220 Вольт соответственно.

Расчет одиночного заземляющего элемента для опоры ВЛ 380 Вольт

Согласно оговоренной ранее методике сначала по таблице выбирается тип вертикального штыря со следующими характеристиками:

  • Материал – сталь.
  • Форма – округлый стержень диаметром 16 мм.
  • Длина L — 2,5 метра.

Обратите внимание: В качестве грунта в соответствие с таблицей выбирается полутвердая глина с удельным сопротивлением ρ, равным 60 Ом на•метр.

Глубина траншеи берется равной полметра. Затем из той же таблицы находится поправочный коэффициент, вводимый для средней климатической зоны. Его значение при фактической длине стержней до 2,5 метров с учетом промерзания грунта в данной местности составляет ψ=1,45. Показатель нормированного сопротивления для этого типа ЗУ равен 30 Омам. Следующий показатель – удельное сопротивление грунта находится по формуле:

ρ (по факту) = ψ•ρ = 1.45х60 = 87 Ом•метр

Полученные расчетные данные выглядят так:

  1. заглубление одиночного штыря в грунт составляет h = 0,5l + t = 0,5х2,5 + 0,5 = 1,75 метра;
  2. его сопротивление для нашего примера (смотрите формулы выше) составляет не более 30 Ом, что соответствует требования ПУЭ для данного напряжения.

Когда одного заземляющего штыря для опоры ВЛ недостаточно – допускается добавлять еще один или даже несколько прутьев. В этом случае потребуется другая методика, используемая для линейного контура или треугольной конструкции.

Расчет переносного заземления

Перед расчетом переносного заземления (ПЗ) следует учесть, что для этого типа защитных приборов требования к сопротивлению стеканию тока еще более высокие, чем у стационарных ЗУ (фото ниже).

Обратите внимание: Самое главное в этой ситуации – правильно рассчитать сечение заземляющих проводов переносного устройства, определяющих эффективность его действия.

При решении этой проблемы, прежде всего, следует научиться различать сети и установки с различными действующими напряжениями. Провода ПЗ (согласно требованиям действующих стандартов) должны выдерживать продолжительный нагрев при замыкании в питающих линиях трехфазного и однофазного напряжения. Для электроустановок с этим показателем до 1000 Вольт выбирается шина сечением не менее 16 кв. мм.

В сетях, где напряжение превышает 1000 Вольт, предельная величина сечения проводов ПЗ не должна быть менее 25 мм2. Точный расчет этого значения производится обычно по следующей формуле:

S = ( Iуст √tф ) / 272

где Iуст – это ток короткого замыкания;

– время его действия в секундах;

272– коэффициент, указывающий на тип металла проводника и отличающийся для разных токов КЗ (для меди, в частности он равен 250, а в расчетах взят с небольшим запасом).

В случаях, когда действующее напряжение не превышает 6-10 кВ – требуемое для надежной защиты сечение провода колеблется в пределах от 120 до 185 мм2. Поскольку комплект переносных заземлений с такими шинами будет очень тяжелым и неудобным в работе – согласно ПУЭ допускается использовать несколько ПЗ с меньшим сечением. При подготовке рабочего места такие заземления включаются в защищаемую цепь параллельно.

В последнем случае в формулу подставляются максимальные значения по времени воздействия тока короткого замыкания, а в трехфазных цепях искомая величина определяется для каждой их фаз. Во втором случае особое внимание уделяется аккуратности обустройства ПЗ, чтобы избежать недопустимого в условиях наложения защитного заземления межфазного замыкания.

Дополнительная информация: При обустройстве переносной конструкции не допускается применять кабель в изоляции, не позволяющей визуально контролировать состояние рабочих жил.

Помимо этого комплект такого заземления обязательно оснащается достаточно «мощными» зажимами, посредством которых элементы переносной конструкции надежно закрепляются на токопроводящих частях. Для их фиксации на заземляющих проводах должны применяться крепления, позволяющие обходиться без переходных элементов. Такая предусмотрительность позволит увеличить площадь контакта и повысить надежность имеющегося соединения. В этом случае конструкция способна выдержать значительные по величине токи и сохранить свою работоспособность в течение длительного времени.

При наложении такого заземления в трехфазных силовых цепях с напряжениями выше 1000 Вольт для получения более надежного контакта допускается использовать сварку. В исключительных случаях согласно ПУЭ разрешено болтовое сочленение, но только при условии предварительной пайки контактной зоны. В заключение отметим, что в рассмотренной ситуации для образования надежного соединения потребуется комплексный подход (ограничиваться только одной пайкой, например, не допускается).

Расчет контура заземления

Удобный расчет контура заземления для частного дома с помощью онлайн-калькулятора. Расчет заземления по актуальным данным последних СНиП.

Расчет заземляющего устройства

В современном мире, мы не представляет свою жизнь без использования электричества. Оно вокруг нас повсюду и именно оно позволило человечеству перейти на совершенно новый уровень развития. Переоценить его важность невозможно, однако при всех своих положительных качествах, за своей безобидностью и простотой, скрывается колоссальная энергия, которая представляет смертельную опасность.

Для того чтобы обезопасить помещения, где постоянно находятся люди, было создано специальное устройство – заземлитель. Это набор проводников, которые предназначены для отвода электрической энергии от приборов к грунту, тем самым исключая поражение током человека. Он состоит из заземлителей (горизонтальных и вертикальных стержней) и заземляющих проводников.

Наш сервис предлагает вам выполнить расчет заземления с помощью удобного онлайн-калькулятора. На основании типа грунта, климатической зоны и видов заземлителей, программа предоставит результат по сопротивлению отдельных стержней, а также общему сопротивлению на растекание. Мы работаем только по последним актуальным данным, в качестве источников использовались:

  • правила устройства электроустановок;
  • нормы устройства сетей заземления;
  • заземляющие устройства электроустановок – Карякин Р. Н.;
  • справочник по проектированию электрических сетей и электрооборудования – Барыбина Ю. Г.;
  • справочник по электроснабжению промышленных предприятий – Федорова А. А. и Сербиновского Г. В.

Калькулятор расчета заземления

Для того чтобы упростить расчеты, мы предлагаем вам воспользоваться простым и точным калькулятором расчета заземления.

Наш онлайн-калькулятор расчета заземления учитывает все поправочные коэффициенты и работает на основании приведенных формул. Для того чтобы выполнить надежный расчет, вам необходимо заполнить поля программы правильно.

  • Грунт. Укажите верхний и нижний слой грунта, а также глубину.
  • Климатический коэффициент. Поправка в расчетах на основании климатической зоны:
    • I зона — от -20 до -15°С (Январь); от +16 до +18°С (Июль);
    • II зона — от -14 до -10°С (Январь); от +18 до +22°С (Июль);
    • III зона — от -10 до 0°С (Январь); от +22 до +24°С (Июль);
    • IV зона — от 0 до +5°С (Январь); от +24 до +26°С (Июль);
  • Вертикальные заземлители. Количество вертикальных заземлителей (предполагаем любой число, по умолчанию 5), их длина и диаметр.
  • Горизонтальные заземлители. Глубина заложения горизонтальной полосы, ширина полки и длина стержня (берется из расчета 1:3, 1:2 или 1:1 к длине вертикального заземлителя – чем больше, тем лучше).

Нажимая кнопку «Рассчитать» вы получите следующие показатели:

  • удельное электрическое сопротивление грунта;
  • сопротивление одиночного вертикального заземлителя;
  • длина горизонтального заземлителя;
  • сопротивление горизонтального заземлителя;
  • общее сопротивление растеканию электрического тока.

Последний параметр является определяющим. Следите, чтобы нормативное сопротивление (2 Ом — для 380 вольт; 4 Ом — для 220 вольт; 8 Ом — для 127 вольт) в электрических сетях было всегда больше, чем расчетное.

Пример расчета заземления на калькуляторе

Предположим, что наш дом расположен на черноземных почвах с толщиной пласта 0,5 м. Мы живем на юге России в четвертой климатической зоне. Предположительно, в качестве заземлителей будут использоваться 5 вертикальных электродов диаметром 0,025 м и длиной 2 м, горизонтальные стержни на глубине 0,5 м – длиной 2 м с шириной полки 0,05 м.

Тогда, перенеся все значения в калькулятор расчета заземления мы получим общее сопротивление на растекание равное 4,134 Ома.

Если в нашем частном доме однофазная сеть с напряжением в 220 Вт, то это значение недопустимо, так как этого заземления будет недостаточно.

Добавим еще один вертикальный электрод и получим значение 3,568 Ом. Это величина нам вполне подходит, а значит такое заземление гарантировано защитит вашу постройку и ее обитателей.

Если вы получаете значение близкое к критическому, то лучше увеличить количество или размер электродов. Помните, что расчет контура заземления крайне важен для безопасности!

Как рассчитать заземление в частном доме вручную

Как вы уже поняли, основной параметр, который необходимо рассчитать – это общее сопротивление на растекание, т.е. нужно подобрать такую конфигурацию электродов, чтобы сопротивление заземляющего устройства, не превышало нормативное. Согласно положениям правил устройств электроустановок (ПЭУ), необходимо соблюдать определенные максимумы для токов:

  • 2 Ом — для 380 вольт;
  • 4 Ом — для 220 вольт;
  • 8 Ом — для 127 вольт.

Правильный расчет начинается с подсчета оптимального размера и количества стержней. Для того чтобы сделать это вручную, легче всего воспользоваться упрощенными формулами, приведенными ниже.

  • Ro – сопротивление стержня, Ом;
  • L – длина электрода, м;
  • d – диаметр электрода, м;
  • T – расстояние от середины электрода до поверхности, м;
  • pэкв – сопротивление грунта, Ом;
  • ln — натуральный логарифм;
  • π — константа (3,14).

  • Rн – нормируемое сопротивление заземляющего устройства (2, 4 или 8 Ом).
  • ψ – поправочный климатический коэффициент сопротивления грунта (1,3, 1,45, 1,7, 1,9, в зависимости от зоны).

Используя эти формулы, вы можете рассчитать заземляющее устройство достаточно точно, однако для упрощения расчета некоторые коэффициенты опускаются.

Также очень важно, чтобы при выборе глубины залегания и длины заземляющих стержней, нижний конец проходил ниже уровня промерзания, так как при отрицательных температурах резко возрастает сопротивление грунта, и возникают определенные сложности.

Примеры расчёта заземляющего устройства

Привёдем несколько примеров для расчёта заземления:

Любой предварительный расчёт заземления сводится к определению сопротивления растекания тока заземлителя в соответствие с требованием ПУЭ, как уже отмечалось ранее, а также на количество требуемых материалов и затрат на изготовления заземляющего устройства (бурение, ручная забивка заземлителей, сварочные работы, электромонтажные работы).

Так же отметим, что любой расчёт начинается с расчёта одиночного заземлителя, одиночный заземлитель применяется в основном для повторного заземления ВЛ опор , где требования ПУЭ (п. 1.7.103.) общее сопротивление растеканию заземлителей должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях: 660, 380 и 220 В.
1.
Пример расчёта одиночного заземлителя для опоры ВЛ 380 В:

Выбираем арматуру из таблицы 1 для вертикальных заземлителей — круглую сталь ø 16 мм., длиной L — 2,5 м.В качестве грунта примем глину полутвердую (см. таблицу 5) с удельным сопротивлением ρ — 60 Ом·м. Глубина траншеи равна 0,5 м. Из таблицы 6 возьмем повышающий коэффициент для третей климатической зоны и длине заземлителей до 2,5 м. с коэффициентом промерзания грунта для вертикальных электродов ψ — 1,45. Нормированное сопротивление заземляющего устройства равно 30 Ом. Фактическое удельное сопротивление почвы вычислим по формуле: ρфакт = ψ·ρ = 1.45 · 60 = 87 Ом·м. Примечание: расчёт одиночного заземлителя проводим без учёта горизонтального сопротивления заземления.

Расчет:

а) заглубление равно (рис. 2): h = 0,5l + t = 0,5 · 2,5 + 0,5 = 1,75 м.;

б) сопротивление одного заземлителя вычислим по формуле, (ρэкв = ρфакт):

прим. автора, где ln — логарифм, смотри ⇒ формулы на Рис. 4

Нормируемое сопротивления для нашего примера должно быть не больше 30 Ом., поэтому принимается равным R1 ≈ 28 Ом., что соответствует ПУЭ для одиночного вертикального заземлителя (электрода) заземления опоры ВЛ — U ∼ 380 В.

Если недостаточно одного заземлителя для опоры, то можно добавить второй или третий, в этом случае для двух заземлителей расчёт выполняется как для заземлителей в ряд, для трёх заземлителей (треугольником) по контуру, при этом надо иметь в виду, что расчёт треугольником малоэффективный, из-за взаимного влияния электродов друг к другу.

2. Пример расчёта заземления с расположением заземлителей в ряд:

Воспользуемся данными из примера 1 , где R = 27,58 Ом·м для расчёт вторичного заземления электроустановок (ЭУ), где нормативное сопротивление требуется не более Rн = 10 Ом, на вводе в здания, при напряжении 380 В и каждого повторного заземлителя не более Rн = 30 (см. ПУЭ п.1.7.103 см. Заземлители) .

Расчет:

Читайте также:  Тэны для сауны

а) для расчёта заземления с расположением в ряд заземлителей, как уже отмечалось выше, возьмем данные из примера 1, где R1 = 27,58 Ом·м одиночного заземлителя и Ψ — 1,45 для третей климатической зоне;

б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находится по формуле 4.3 (см. Расчёт заземления):

n = 27,58 / 10 = 3,54 шт, где коэффициент спроса (использования) примем η = 1; далее по таблице 3 выберем число электродов n = 3 в ряд при отношение расстояние между электродами к их длине a = 1хL и коэффициент спроса η = 0,78, далее уточняем число электродов:

n = 27,58 / (10 · 0,78) = 3,26 шт; где потребуется увеличить число электродов или изменить расстояние к их длине a = 3хL, для экономии материалов примем отношение a = 3хL и количество вертикальных электродов равным — n = 3 шт . с коэффициентом спроса η = 0,91: n = 27,58 / (10 · 0,91) = 3,03 шт; т.к. общее сопротивление заземлителя уменьшиться за счёт горизонтального заземлителя;

в) длину самого горизонтального заземлителя найдем исходя из количества заземлителей расположенных в ряд, где а = 3· L = 3 · 2 = 6 м ; Lг = 6 · (3 — 1) = 12 м;

г) сопротивление растекания тока для горизонтального заземлителя находим по формуле 5 (см. Расчёт заземления), где в качестве верхнего грунта принято глина полутвердая с удельным сопротивлением 60 Ом·м., до глубины верхнего слоя нашей траншеи t = 0,5 м. см. пример 1; выберем полосу заземлителя 40 х 4 мм ., где коэффициент III климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 2,2 и коэффициент спроса примем η = 1 , т.к. расстояние между электродами более 5 м., что исключает влияние около электродной зоны, по количеству принятых электродов, их длине и отношению расстояния между ними (см. таблицу 3 Расчёт заземления) :

ширина полки для полосы b = 0,04 м.

Rг = 0,366 · (100 · 2,2 / 12 · 1) · lg (2 · 12 2 /0,04 · 0,5) = 27,90 Ом·м, примем сопротивление горизонтального заземлителя — Rг = 27,9 Ом·м;

где, lg- десятичный логарифм ( смотри формулы формулы для расчёта рис. 4), b — 0,04 м. ширина полосы, t — 0,5 м. глубина траншеи.

д) Определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Rоб = (27,9 · 27,58) / (27,58 · 1) + (27,9 · 0,91 ·3) = 7,42 Ом·м

где Rоб общее сопротивление заземлителей; R В вертикального; RГ — горизонтального , ηВ и ηГ — коэффициенты использования вертикального и горизонтального заземлителя , n — шт количество вертикальных заземлителей.

Rоб = 7,42 Ом·м соответствует норме при напряжении U — 380 В для ввода в здание, где нормированное сопротивление не более Rн = 10 Ом (Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В., ПУЭ п.1.7.103.)

3. Пример расчёта заземления с расположением заземлителей по контуру:

В качестве грунта примем сугли́нок — почва с преимущественным содержанием глины и значительным количеством песка с удельным сопротивлением ρ — 100 Ом·м. Вертикальный заземлитель из стальной трубы с наружным диаметром d — 32 мм., толщена стенки S — 4 мм., длиной электрода L — 2,2 м и расстоянием между ними 2,2 м ( a = 1хL). Заземлители расположены по контуру. Глубина траншеи равна t = 0,7 м. Из таблицы 6 возьмем повышающий коэффициент для второй климатической зоны и длине заземлителей до 5 м, его сезонное климатическое значение сопротивление составит Ψ1,5. Нормированное сопротивление заземляющего устройства равно Rн = 10 Ом·м . Фактическое удельное сопротивление почвы вычислим по формуле: ρ экв = Ψρ = 1.5 · 100 = 150 Ом·м.

а) вычислим сопротивление растекания тока одного вертикального заземлителя (стержня) по формуле 2 см. Расчёт заземления:

R О = 150 / (2π · 2,2) · ( ln (2 · 2,2 / 0,032) + 0,5 · ln (4 · 1,8 + 2,2) / (4 · 1,8 — 2,2)) = 10,85 · (ln 137,5 + 0,5 · ln 1,88) = 56,845 Ом·м., где T = 0,5 · L + t = 0,5 · 2,2 + 0,7 = 1,8 м. Примем RО = RВ = 56,85 Ом·м.,

б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находим по формуле (см. Расчёт заземления):

n = 56,85 /10 = 5,685 шт., округляем по таблице 3 до ближайшего значения, где n = 4 шт., далее по таблице 3 выберем число электродов n = 6 шт по контуру при отношение расстояние между электродами к их длине a = 1хL, где коэффициент спроса η = 0,62 и уточним количество
стержней с коэффициентом использования вертикальных заземлителей: n = 56,85 /10 · 0,62 = 9,17 шт., т.е требуется увеличить количество электродов до n = 10 шт., где коэффициент спроса η В = 0,55 ;

в) находим длину горизонтального заземлителя исходя из количества заземлителей расположенных по контуру: L Г = а · n , L Г = 2,2 · 10 = 22 м., где а = 1 · L = 1 · 2,2 = 2,2 м;

г) находим сопротивление растекания тока для горизонтального заземлителя по формуле 5 (см. Расчёт заземления), где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5 , коэффициент спроса примем по таблице 3 — η Г = 0,34 , ширина полосы горизонтального заземлителя b — 40 мм , (если из той же трубы d = 32 мм , то тогда ширина b полосы будет равна — b = 2 · d = 2 · 32 = 64 мм , b = 0,064 м .) и удельное сопротивление грунта — ρ = 100 Ом.м, по формуле 6:

R Г = 0,366 · (100 · 3,5 / 22 · 0,34) · lg (2 · 22 2 /0,040 · 0,7) = 17,126 · lg 34571,428 = 77,73 Ом·м, примем сопротивление горизонтального заземлителя — R Г = 77,73 Ом·м;

д) Определим полное сопротивление вертикального заземлителя с учетом сопротивления растекания тока горизонтальных заземлителей по формуле 6:

Rоб = (77,73 · 56,85) / (56,85 · 0,34) + (77,73 · 0,55 ·10) = 9,89 Ом·м , что соответствует заданной норме сопротивления не более Rн = 10 Ом·м.

Перейти далее: Продолжение примеров расчёта заземления

Данный расчет следует применять как оценочный. После ок ончания монтажа заземляющего устройства необходимо пригласить специалистов электролаборатории для проведения электроизмерений (для ООО и ИП обязательно).

Вернутся:

Перейти в раздел: Паспорт ЗУ, Акт освидетельствования скрытых работ, Протокол испытания ЗУ

Примечание: данный раздел пока находится в разработке, могут быть опечатки.

Расчет заземляющего устройства

Согласно требований ПУЭ, заземление обязательно во всех электроустановках при напряжении 380 В. и выше переменного тока, 440 В. и выше постоянного тока, а в помещениях с повышенной опасностью, особо опасных и в наружных установках – при напряжении 42 В. и выше переменного тока, 110 В. и выше постоянного тока.

В электрических установках заземляются корпуса электрических машин, трансформаторов, аппаратов, вторичной обмотки измерительных трансформаторов, приводы электрических аппаратов, каркасы РУ, РП, ЩСУ, РЩ, ЩО, металлические корпуса кабельных муфт, металлические оболочки и броня кабелей, проводов, металлические конструкции зданий и сооружений и другие металлические конструкции, связанные с установкой электрооборудования.

Заземление, предназначено для создания нормальных условий работы аппарата или электроустановки называется рабочим заземлением. К рабочему заземлению относится заземление нейтралей трансформаторов, генераторов, дугогасительных катушек. Без рабочего заземления аппарат не может выполнить своих функций или нарушается режим работы электроустановки.

Для защиты оборудования от повреждений ударом молнии применяется грозозащита с помощью разрядников, искровых промежутков, стержневых и тросовых молниеотводов которые присоединяются к заземлителям. Такое заземление называется грозозащитным. Обычно для выполнения всех трех типов заземления используют одно заземляющее устройство. Для выполнения заземления используют естественные и искусственные заземлители.

В качестве естественных заземлителей применяют водопроводные трубы, металлические трубопроводы, проложенные в земле, за исключением трубопроводов горючих жидкостей и газов, металлические и железобетонные конструкции зданий, находящиеся в соприкосновении с землей, свинцовые оболочки кабелей, заземлители опор ВЛ, соединенные с заземляющим устройством грозозащитным тросом, рельсовые подъездные пути при наличии перемычек между рельсами.

Естественные заземлители должны быть связаны с магистралями заземлений не менее чем двумя проводниками в разных точках. В качестве искусственных заземлителей применяют прутковую круглую сталь диаметром не менее 10 мм ( стальной пруток ),угловую сталь (40х40, толщиной не менее 4мм), стальные трубы (не кондиция) толщиной стенки не менее 4мм.

Количество заземлителей ( вертикальных и горизонтальных ) определяется расчетом в зависимости от необходимого сопротивления заземляющего устройства, согласно требований ПУЭ.

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ГРУНТОВ. Табл. 7.3

При расчете заземляющего устройства определяется тип заземлителей, их количество и место размещения, а также сечение заземляющих проводников. Выполняем расчет заземляющего устройства для механического отделения. Естественных заземлителей нет. Удельное сопротивление грунта (земля – суглинок) при нормальной влажности равно 86 Ом * м.

Сопротивление заземляющего устройства нейтрали трансформатора на стороне 0,4 кВ согласно ПУЭ должно быть не более 4 Ом. Сопротивление заземляющего устройства на стороне 10 кВ согласно ПУЭ должно быть не менее 10 Ом. При совмещении заземляющих устройств различных напряжений (по заданию 0,4 кВ и 10 кВ) принимаем меньшие из требуемых значений сопротивления заземляющего устройства, т.е. Rз = 4 Ом является определяющим значением для расчета.

Заземляющее устройство выполняем в виде контура из стальной полосы 40х4мм, проложенной на глубине 0,7м вокруг оборудования подстанции (горизонтальный заземлитель) на расстоянии 2-х метров от подстанции. Общая длина полосы 60 м. Предварительно принимаем в контуре 10 вертикальных заземлителей (стальные прутковые стержни длинной 5м и диаметром 12мм на расстоянии 5м друг от друга). Находим расчетное удельное сопротивление грунта:

Для горизонтального заземлителя:
P расч.Г = K сез.Г * P сугл. 3 * 86 = 285 Ом * м

Для вертикального заземлителя:
P расч.В = K сез.В * P сугл. 1,25 * 86 = 107,5 Ом * м

P расч.В – расчетное удельное сопротивление земли для вертикальных заземлителей,
P расч.Г – расчетное удельное сопротивление земли для горизонтальных заземлителей,
K сез.Г – коэффициент сезонности, учитывающий промерзание и просыхание грунта (справочная величина ) для горизонтальных заземлителей,
K сез.В – коэффициент сезонности, учитывающий промерзание и просыхание грунта (справочная величина ) для вертикальных заземлителей.

Определяем сопротивление горизонтальных заземлителей (соединительной полосы контура):


где,
L – длина полосы, м; t – глубина заложения, м; b – ширина полосы, м. Определяем сопротивление горизонтальной полосы в контуре с учетом коэффициента использования соединительной полосы в контуре из 10 вертикальных электродов табл. 7.4

КОЭФФИЦИЕНТ ИСПОЛЬЗОВАНИЯ СОЕДИНИТЕЛЬНОЙ ПОЛОСЫ
В КОНТУРЕ ИЗ ВЕРТИКАЛЬНЫХ ЭЛЕКТРОДОВ.
Табл. 7.4

Определяем сопротивление одного вертикального заземлителя (стальные прутковые стержни длинной 5м и диаметром 12мм)

где L – длина стержня, м; d – диаметр стержня, м; t – глубина заложения, равная расстоянию от поверхности земли до середины заземлителя, м. Определяем необходимое количество вертикальных заземлителей, с учетом коэффициента использования вертикальных заземлителей размещенных по контуру, зависящий от расстояния между ними а, их длины и количества табл. 7.5
Принимаем в контуре 10 вертикальных стержней.

КОЭФФИЦИЕНТЫ ИСПОЛЬЗОВАНИЯ ВЕРТИКАЛЬНЫХ
ЗАЗЕМЛИТЕЛЕЙ, РАЗМЕЩЕННЫХ ПО КОНТУРУ
БЕЗ УЧЕТА ВЛИЯНИЯ ПОЛОСЫ СВЯЗИ.
Табл. 7.5

Появилась возможность онлайн расчета: Онлайн расчет заземления

Просмотр и ввод комментариев к статье

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]